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ABSTRACT
We consider the problem
u, = (u™ with x e R, t >0 ,
t XX
(P) .
*) “,*(!, 5
u(x,0) = u (x) for x e R , AR
J%?¢?
where m > 1 and u; is a continuous, nonnegative function that vanishes ~}‘i
:,,4- »z
outside an interval (a,b) and such that (u?“)” < -C <0 in (a,b). Using i VR
a Trotter-Kato formula we show that the solution conserves the concavity in e
time: for every t > 0, u(x,t) vanishes outside an interval ((t) = ﬂ: il
(C1(t)'C2(t)) and v%. "A‘_.
KR CET
c S
(um'1) x € - (ot 1) t"_\-}~';
B v
DR
in Q(t). Consequently the interfaces x = ci(t), i = 1,2, are concave Fé?%?
an
curves. These results also give precise information about the large time b@j&:
behaviour of solutions and interfaces. £ 7 2
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SIGNIFICANCE AND EXPLANATION

\\‘i)The flow of a gas through a porous medium is governed by a degenerate
quasilinear parabolic equation. It is known that the nonnegative solutions to
this equation possess a lower bound for the second derivative of the pressure
in the spatial variables. This bound plays an important role in the
mathematical treatment and is related to the entropy of the flow. Since the
solutions exhibit interfaces acres:xzﬁich ;;b jumps positively, no upper
bound is possible globally for ;;&. JNeverthelessI:éipf;;;\that the concavity
of wv(s,t) in the region where v is positive is preserved in time. This is

in itself an interesting geometric property of the solution. It also allows

one to obtain precise information about the asymptotic behaviour of the flow.
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CONCAVITY OF SOLUTIONS OF THE POROUS MEDIUM EQUATION

Philippe Benilan®’(!) and Juan Luis Vazquez''/(1)s(2)

Introduction

We consider the Cauchy problem

m
u = (u) in Q=R x (0,»)
(P) t xx

u(x,0) = uo(x) for x ¢ R

where m > 1 and u, is a non-negative continuous function vanishing outside
a bounded interval (a,b) with ug(x) > 0 for x ¢ (a,b).

It is well known (see for instance [V2] for general references on this
problem) that there exists a unique generalized solution u(x,t) of (P) that
is non-negative bounded and continuous on _Q-- Moreover there exist two
continuous monotone curves x = [4(t), x = ;5(t) called the interfaces such
that £4(0) = a, £5(0) = b and
a 9%8F ((x,t)eQs ulx,t) > 0} = {(x,t)eQs T () < x <g (0} .
Also u € C®(R).

In the description of the flow of a gas through a porous medium, u

represents the density of the gas and v = ;‘m_‘ =1

the pressure. We shall
retain this denomination in the sequel. Of course v ¢ C*(9) and it
satisfies on Q@ the equation

(0.1) ve = (m=Nvvy, + V2 .

*
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%3 We recall also the basic "convexity inequalities®

5x

é?é (0.2) Voo » = —_ in D' (Q)

i xx (m+1)t

o (0.3) (- e +B_— ) >0 in D'(RN ‘
ir i (m+1)t i

Now we assume that the initial pressure v, s-JET u%“ is concave in

(a,b); more precisely we assume

‘o
-,
o

P

‘(i (004) Vo'xx < -C in D' (a'b)

Sk

3

:& with some constant C » 0. The purpose of this paper is to study the
)

concavity of the pressure v on Q and of the interfaces f; on R+, and

P
L

their consequences. The main result is

>
[

THEOREM 1. Under assumption (0.4), the following “"concavity inequalities"”

[

2
5 -

e hold
O
] (0.5) Voy € = T————— on @ .
) . xx 1+(m+1)Ct
k )
S _ -
)ty o MC v mt = .
. (0.6) (-1) (Ci TH(m+1)CE Ci) <0 in D'(R') for i 1,2
)

In the case C = 0, the concavity (0.5) has already been proved by

G P

¥
Fx)

Graveleau and Jamet {GJ). For proving (i) in the general case C > 0, we

will follow their approach based on splitting (0.1) into the two equations

T
o

‘; (0.7) ve = (m=1)vvy,
LA
helly (0.8) ve = v2 .
"‘\ e
J{ﬁ We then recover (0.1) from (0.7), (0.8) via a Trotter-Kato formula.
3
}{: In the case C > 0, the combination of (0.5) and (0.6) with (0.2) and
';;.:
f‘ (0.3) gives strong information about the asymptotic behaviour of the pressure
LN 4]
‘*q and the interfaces. It was proved in [V1] that this asymptotic behaviour is
Al
; ﬂ determined in first approximation by the two invariants of the motion, namely
M)
i the total mass
i{ﬁ (0.9) M= [ up(x)ax = [ u(x,t)dx
bE
N2
B

5 \j-."-c.‘kf N s“\ {x N -""{'Q
{ s DAY 5 y \ .

."‘

wrzv‘f};' v\"?'n""’}‘(*' }-’.‘r"‘,‘:-:{‘-'.‘/ AR

‘;7‘\.\'1‘,\ '«.




and the center of mass

A v B %
FeB e pdnl -

(0.10) X0 = M~' [ xup(x)ax = M7 [ xug(xrax .

In fact there is a selfsimilar (Barenblatt) solution given in terms of the

v
v

pressure by

T R S
ERY SR

LA

(r(e)? = (ex)?),

. (0o11) v(x't) = 2(m+1)t
' with
b (0.12) r(t) =M™ %t) , c=ctm >0 ,
®

. such that as t + », v-v = o(t™(®*1)) uniformly in x € R, v, + x/(m+1)t =
T _
) ott™") uniformly in 9, Zi(t) = xg + (-1 ir(t) + o(1) ana g(t) =
[+

1 -
2 (-Dirr(e) + o(e™).
ph

As a consequence of Theorem 1 these results can be improved as follows:

THEOREM 2. Under the assumption (0.4) with C > 0 we have as t + =
b (0.13) Vi (X,t) = = = + O(1)
i xx: T (m+1)t ¢ 2
o uniformly in x for (x,t) ¢ Q and
A3 “'
3 " 1w 1
% (0. 14) £R(e) = (=1)*c"(t) (1 +0(5)) .
I.‘

These rates of convergence are optimal as it can be easily checked on the

time-delayed Barenblatt solutions v(x,t;Tt) s‘;(x,t+r), where '; is given by

Stk

(0.11) and 1t > 0. From (0.13), (0.14) sharp estimates follow for v, v,, ¢

k)

Y]

™l

:‘ and z'.

s The main problem in proving concavity results lies in the fact that

S5

kL across a moving interface of a solution to problem (P) v, has a jump

&

;E discontinuity, therefore v,  is very singular and positive on the

" interfaces. Using equations (0.7), (0.8) allows to overcome this difficulty
' -

;: because the interfaces in (0.7) do not move while in (0.8) we are reduced to
1)

;} study the characteristic lines of a first-order equation.
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On the contrary in proving lower bounds for v no such difficulty

xx

arises since we can always approximate our solution by smooth positive
solutions and apply the maximum principle to the equation satisfied by v,
as in the proof of (0.2), cf. [AB]. Thus if v 1is a solution of (0.1) whose

initial datum vg satisfies

(0.15) vb,xx 2 =C in D'(R)
then
(0.16) Vi » = T in D'(Q)
. xX 1+(mF1)ce y

It is worth noting that we can always use the maximum principle method of
(AB] when dealing with problem (P) for 0 < m < 1 (the so-called fast-
diffusion case) or m = 1 (the heat equation) and the above results (0.5),
(0.16) are true if we define v = - T%E u'(1'm) if m< 1, v = log(u) if
m = 1. We shall leave the verification of these facts to the reader, but let
us recall that Vv € C(Q) in both cases and v < 0 if m < 1.

The plan of the paper is as follows: in section 1 we study the Cauchy
problems assogiated to (0.7) and (0.8) for v, satisfying (0.4). We prove
the statement about v

xx 1in Theorem 1 via the Trotter-Kato formula in section

2. Finally, section 3 studies the interfaces and the asymptotic behavior.
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1. PRELIMINARIES

In this section we study the Cauchy problems for equations Ve = AVV,

and v = vi. To make their application in Section 2 easier it is convenient
to introduce the following notations. let N be the set of continuous non-
negative functions f : R+ R satisfying for some bounded interval I(f) =
(a,b)

f(x) =0 if x ¢ (a,b) , £" <0 in D'(a,b) .
It is clear that if f ¢ N, then either £ = 0 or I(f) = {xeR; f(x) > 0}.
N is a closed set in the span C.(R) of continuous real functions on R

with compact support with the usual topology. To measure the concavity of a

function f € N we define

C(f) = sup{C » 0 ; £,, < -C in D'(I(f))}

c(f) = sup{c » 0 ; cf,, > -1 in D'(R)}

with the convention C(f) =0 if € £ 0. Clearly 0 < C(f) < c(f)'1 o
and the maps f < C(f), £ » c(f) are upper semi continuous functionals on N
(endowed with the topology of C,(R)).

Let N4 = {feN; c(f) > 0}. The following results can be proved by
elementary calculus.

LEMMA 1.1. let f ¢ N1 with £ Z0 and I(f) = (e,b).

1) £ € w2r™(a,p) and

C(f) = inf ess - f" < sup ess -~ f" = c(f)‘l

(a,b) (a,b)

i1) £ e W'°(R) and

o

R 2 21£0

]

N £ fbal 02 »
c(£) c(f)

2
£
(4

g X

iii) €' e BV(R) , f'(a,) > 0 > f'(b~) and

Ll 4
WL
Yy

_5_
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£° = £%%(4,p) * £'(a4)8, = £'(b-)8y in D'(R).

We solve first the Cauchy problem

(1.4a) Vg * AV, in Q =R x (0,») ,

(1.4b) v(x,0) = vo(x) for x e R ,

where A is a positive constant and vy € N. We obtain

PROPOSITION 1.2. Iet vg € N and I(vy) = (a,b). There exists a unique

function v € C(E) that solves problem (1.4) in the sense that

(a) v>0 in Q, v is positive precisely on the set 9 = (a,b) x (0,»)

and v € C7(R).
(b) vy = Avvy, in Q.
(c¢) v(x,0) = vg(x) for every x ¢ R.

Moreover, if v(t) = v(e,t) then for every t > 0, v(t) ¢ Nq and

(1.5) 0<vi(t) < vy in R ,
1 Clv,)
(1-6) Tt < Ve ¢ T Tacgne 22 PilaR) -

If c(vg) > 0 then for every (x,t) € Q

ktvo(x)

c(vo)

(1.7) vg(x) = vix,t) <€ .
Proof. Let us assume first that c¢(vy) > 0. To avoid the degeneracy of the

equation (1.4a) at the level v = O we begin by considering the problems

-

4




TREEL A 3 € €. A X I

/

v, = Avvxx in 9§ =f{a<x<b, t >0}

ﬁ vix,0) = Yo (x) for a<x<Db
(P €

_ vla,t) = v(b,t) = e(AtClvg) + D' for >0 , ;

where € 1is positive and {voe}e is a sequence of C®, positive functions

B L

in [a,b] such that

i) (Voe)xx < C(Vo) and (Voe)xx ’ 1/C(Vo) ’

| IR TN

ii) vge * vg uniformly in (a,b] as c + O,

iii) wvp(x) = e and Voe,xx = =C(vg) at x = a,b.
Since (P;) is a quasilinear parabolic problem and we have the a priori
estimate € < v(x,t) < sup,{vg.(x)} for the solutions, by the standard theory

(cf. [LSU]) there exists a solution v, ¢ c”(@) of problem (PB.).

Consider now the function p(x,t) = v, (x,t). It satisfies in Q the

equation

Pe = AVePxx * 2AVeyPy + AP

with initial condition p(x,0) = VOe.xx‘x) and boundary conditions
C(vo)
plast) = pb®) = = Tectvget
(Note that p = v .,./(Av).) Since for every k > 0 the function
P(x,t1k) = =(At+k)™)

is an explicit solution of the equation satisfied by p, it follows from the
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maximum principle that

Clv,)
(1.8) T Teetvg < PUUY €T e

in Q. Since p = Ve, xx and vc(a,t) = ve(b,t) < € it follows fromDi¢rm

1.1 and (1.8) that the following estimates
Av
> - ——&
et At+c(vo)

’

L, _(oa)?
2(xt+c(v,)) !

29v. i
2 0> (b-a)
lve,l” < S ALY and v | < 2(c(v,)+28)

hold in . Therefore if we pass to the limit € +0 there is a subsequence
{vsk} of {v.} that converges uniformly in [a,b] x (0,T] for every

T >0 toa function v e C(E) and the above estimates hold for v so that
v e w1'”((a,b) x (1,2)) for every T > 0. Because of (1.8) in a neighborhood
of every point (x,t) € @ the sequence v.(x,t) is uniformly bounded away
from O, hence by standard bootstrap arguments (cf. [LSU] or [A]) we conclude

that v e Cw(ﬂ) and ;£ = Av Vex is satisfied in the classical sense. It is
also clear that v € C(ﬁ) and both the initial and boundary conditions are
satisfied.

To obtain a solution v in Q we extend v by v(x,t) =0 if
x ¢ (a,b) and t > 0.

The uniqueness of the solution is a consequence of the maximum principle
(it follows in particular that all the sequence {v_.} converges to V). In
fact if we have two solutions v,w of (1.4) corresponding to initial data
Vor Wog € Ny and vy > wg then v > w in Q.

In case c(vg) = O we can yet use the above procedure to obtain a

solution and only the convergence at t + 0 poses a problem that can be

T KT Wt
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solved by approximating the initial data vy above and below with data in N1

and using the above comparison results. #

REMARK. Independently of the authors M. Ughi [U] has studied the equation
u = uu, - u(l-u) in R x (0,T), for initial data not necessarily concave.
She obtains results about existence, uniqueness and nonuniqueness for suitable
classes of weak solutions. The results apply to equation (1.4a) with obvious
changes.

Consider now the initial-value problem
(1.9a) Ve = va|2 in Q ,
(1.9b) v(x,0) = vg(x) for x ¢ R .
Equation (1.9a) is one of the simplest and best-known examples of Hamilton-
Jacobi equation. There is now a general theory of viscosity solutions for
equations of the type u, + H(uy) = 0 where H 1is a continuous function. In
particular we have the following result proved by Crandall and P. L. Lions.
PROPOSITION 1.3. [cf. [CL], Theorem VT.2). let vy € BUC ®s{ the set of

bounded uniformly continuous functions in R. There exists a unique

vV € C(a), which is a viscosity solution of u, + H(uy,) =0 in Q with

initial data v(x,0) = vo(x).

Moreover the maps T(t) : BUC(R) + BUC(R) defined for t > 0 by

T(t)vg = v(+,t) form a strongly continuous, order-preserving contraction

semigroup in BUC(R).

The fact that in problem (1.9) the nonlinearity H(p) = p2 1s convex

congiderably simplies the construction of the solutions of (1.9), especially

if the initial data Vo € N. In this case we can use the classical method of

characteristics (cf. (Bt], (L]) as follows. Assume for simplicity that

.
v
) .

™
W

o
o

vg € c1([a,b]), where (a,b) 1ie the support of vg. Through every point

A
(ol Sl

]
L 4
s o

¢
£

(£,0) with a < E < b we construct a characteristic line

.

-y

_'_
* x‘f-

4
2
)
(o]
)

e




2

AL

\ {

}E . (1.10) x(E,t) = E - 2v§(E)t .

32

}»}. Along this line the derivative w = v, of every classical solution of Ve =

e |v,|2 must be constant. Therefore we get

: ta 2

:2 ) (1.11) vix,t) = v(£,0) + fo 3 Vix(t),1)dt = vo(E) - Iva(E)l L

ARG

f;" The concavity of Vo in (a,b) implies that these characteristics do

o not cross each other. In that way a C! solution of (1.9a) can be

5 }‘:,‘5

'*Eﬁ constructed in the region where v > 0. It is easy to see that this region
4

Ay

TR has the form

SO (1.12) = {(x,t) € Q : s4(t) < x < s53(t)}

S

{1{1 where x = sq(t) and x = s,(t) are Lipschitz-continuous curves (the

e

K] interfaces), s4(0) = a, s,(0) = b, and (-1)isi(t) is nondecreasing in

o time. Along the interfaces the derivative Vi is discontinuous, i.e. a chock

propagates according to the well-known Rankine-Hugoniot conditions.

‘b »
o The following results about problem (1.9) will be needed in the proof of
5 Theorem 1. -
o
f{} PROPOSITION 1.4. let v be the viscosity solution of (1.9) with vg e .
b 1L —_—
SH N
:T{: Then Vv ¢ W"“(QT) for every Tt > O, v(t) = T(t)vyg e 4 for every t > 0
)
Iy and
508 (1.13a) c(v(t)) > clvy) + 2t ,
oR
el Cv,)
o (1.13b) c(v(t)) > T+3Eciv) !
4l 0
"“;’r.};
‘5rf Moreover if c(vg) > 0 then
SRS 2tiv
g . - { ——— .
. (1.14) vit) vo C(vo)
17 |
;f'ﬁj Proof. By the contracting property of T(t) we may assume that C(vg), %
. <, - |
5%& c(vg) > 0 and v, € C1([a,b]). To prove (1.13) let t > 0 and let xy and

.
"
X
r
W
]
‘l
-

1
S
g
4
1
”

x, be two points s¢(t) < x, < X, € sp(t). There are well-defined starting-

v.e ot
CIRC I ]

= g

-10-
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points §4 and £, in (a,b) for the characteristic line (1.10) through
(xq,t) and (x,,t) respectively. Setting wq = v (xq,t), wy = Vyl(xq,t) we
have
Xy = xp = £q = £ + 2wy = wq) .
But v, is constant along the characteristics, hence wy-wy = v{(x;) - vil(xq) > 0
since vy is strictly concave. Therefore if we write

X=X E.-E
172 _ 1 2+2t

WaWy W2y
and let x4y - x5 *+ 0 we obtain the relationship

1 -t

‘ + 2t
vxx(x,t) va(E)

(1.15)

valid in Q. (1.13) follows immediately. From this we get

2iv 1\
I RPN AL
(1.16) Ve T Y% 2t+c(vy)
(1.14) is now immediate. #
-11-

N SRS SR AR SR Y
AR \*_4‘.\-..}“\:_\3-.
™

Rt A A Nt




BN 5

b
:J

-4 2. THE TROTTER-KATO FORMULA

p.d

‘ let us now consider the problem

ii} (2.1a) ve = (m=1)vv,, + V2 in @
3

K13

R (2.1b) v(e,0) = vg e N .

To solve (3.1) we shall use a Trotter~Kato formula based on the results of the

previous section (with A = m=1). It is interesting in that respect to think

of the solution v(x,t) of problem (1.4) as a semigroup 8(t) : N+ N, ¢t > 0,

defined by S(t)vg = v(t) if wv(t) = v(e,t), v being the solution of (1.4)

ik
des
. with initial data vy. In the same way the solution to problem (1.9) defines
!e».. another semigroup T(t) : N+ N, t > 0. Both are order-preserving continuous
3 semigroups in N. The concavity estimates (1.6), (1.13) can be reformulated
e
s as
]
v (2.2a) c(s(t)vg) > clvg) + (1)t ,
e (2.2b) c(T(t)vg) > clvg) + 2t , :
J
g c( vo)
(AN and
:T-Q C(v,)
™ e —————— .
.:(5- (2.24) C(T(t)Vo) > 1"‘2C(V0)t
- Result of the type of Chernoff and Trotter-Kato formulas for pairs of
vl
[ :::ﬁ' continuous semigroups are known when both gsemigroups are contractive in some
N
b _} Banach space X, cf. [BCP]. Unfortunately in our case, while the semigroup
e, &
‘, |

: T is contractive in L*(R) or BUC(R), the semigroup § is not. In fact
'y
3 . the only contraction properties known for the solutions of (1.4) apply to the
4 .'
'\:'.E:; function u = log(v), which satisfies the equation . = Alexp(u)),,.» cf.
P N

[BC] .
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The convergence of our Trotter-Kato formula relies on the compactness due
to (2.2). We proceed as follows. For every € > 0 we define the approximate

solution ve(t) to problem (2.1) by

= t=(n~Ne n _ ne-t n-t
(2.3) v _(t) e Ve = Ve

if (n-1)e < t < ne, where for n= 1,2,...
(2.4) ve = (S(e)T(eN vy
we obtain the following convergence result

PROPOSITION 2.1. As € + O, v, converges to a function v ¢ (-Q-) N W1'°(Q.r)

for every Tt > 0 uniformly on compact subsets of a = R x [0,#), v satisfies
1
(2.5) ve = S (V) - (m=2)v

in D'(Q). Moreover if v(t) : x * v(x,t) then for every t > 0, v(t) ¢ ,

and
c(vo)
(2.6a) C(v(t)) >m '
(2.6b) c(v(t)) > clvg) + (m)t .
Also
, . 21v 1,
(2.7) X = clvg)+(mr)e f
(m—1)llv " ZIVOIQ
(2.8) c(vo)+(m+1)t € Ve ¢ Syt

Proof. By induction we have vg € Ny,

YA
's L%y n
: (2.9a) 0« ve < 'I'(nt-:)vo < lvollw ’
4
<
- Clv,)
Na, n 0
. b
¥ (2.9Db) c(ve) 1+(m+1)neClvy) '
A
") n
no (2.9¢) c(v)) » c(v,) + (mr1)ne ,
- € 0
1A
1
=1 {2.94) supp(v:) C supp(T(ne)vy) .
P
‘:;_i
) =13~
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Observe that (2.9a) follows from the fact that S(e)v < v and T(e) and
S(e) are order-preserving maps. (2.9b) and (2.9c) follow from (2.2) and
finally (2.9d4) is a consequence of (2.9a).
Assume now that c(vo) >0 and fix tg 2 0. We have
v w"'(n x (0,t.))
€€ *%o ’

0<ve<lv°ln ’

supp(ve(t)) C supp(T(to+e)vo) if 0 <t « to .

2
ve,x < 2lvol~/c(vo) .

Moreover
d+§ S{e)w_—w T(e); -v
€ € € € €

= -+ .
dat € €

-1

where ;e(t) = vg if (n=-1)e € £t < ne and Ve = T(e);e. Since

clwe(t)) > c(V_(£)) + 2¢ > clvy) we have by (1.7) and (1.14)

(m=t)avi,  a'v_ 2w

< < .
c(vo) dat c(vo)

It follows in particular that v, is relatively compact in C(R x [0,tq]).

If v

¢ converges uniformly to a function v € C(R x [0,ty]) along a sequence

€ =€+ 0, we have Vv ¢ wl (R x (0,t4])

2 2Ivolw
0 € v £ T(t)vo ’ |Vx| < W
and
(m-1)lvol_ 2lvol°
c(v,) < Ve < c(v,) *
0 0

Furthermore the estimates (2.6a) and (2.6b) follow from (2.9b) and (2.9c) and
the upper-semi-continuity of the functionals ¢ and C.

To end the proof of the proposition we have yet to check that equation

(2.5) holds. Por that we write
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fg? d+v
i;ﬂ ; € = l € S + l € v =
;;:25 ol [ (Thw_(£)) dr + = fo(T('r)vE(t))Tdr
ﬁke € 1 re ~ 2
(2.10) = -— {(S(r)w (t))} L [{(r(t)v_(t)) _}4ar -
€ -0 € x
a - m% .fg{(S(r)we(t))x}zdr =1, 41, +1, .
4!
S We want to pass to the limit € + 0. Let us begin for instance with I,.
¥ Since Ve, TV uniformly in R x [0,t3], using also (1.14) it follows that
18
- sup IT(t)ve(t) - v(t)lo =0 as € * ¢ .
% 0<1<e
k¢ 0<t<t,
%A If we now observe that c(T(T);e(t)) > c(vg) and supp(T(t);e(t)) C
%g supp T(((tg+e)vg) C [~R,R] for some R > 0 the convergence
& -
b (2.11) |(T(r)ve(t))x|2 +> lv(t)xl2 in c((o,tql:nt(m))
,;U will hold uniformly in 7t ¢ (0,e) as a conseguence of the following compact-
23
0 ness result applied to the family ({f (x) = T(T)V (£)}, 0K t < ¢t ,
4 : t,T.c € 0
e €>0, 0< 1< €.
;; LEMMA 3.2. For every constant ¢, R > 0 the set
o5 = . «R.R
f; Nco.R {f e N : cl(f) > cos supp(f) C [ R,R]}
o is a compact subset of W"P(R) for any p € [1,»). Moreover there exist
b
L constants C = C(cg,R) > 0 and 6 € (0,1) such that
e,_ (2.12) et < cuf,-le9
= w' 'P(R) P (m)

For any two functions f4f, ¢ Nco,R‘

For a proof of this result see [L, lLemma 10.1]. It is based on proving
that Nco rC wS'P(R) for some s > 1 and p > 1 and then using
’
interpolation.
Continuing with the proof of Proposition 3.1 it follows from (2.11) that
1 r€ ~ 2 2 1
1, =< [(UTOV (e)) 37+ Jv(e) € in c(0,e4] 5 LU

In the same way we prove that

“lfa-
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-1 re 2 2 1
I, =< fo{(S(t)we(t))x} ar > (v(t) )° in C([0,t,] 7 L (R)) .

Finally since

F(t) =2 [S(s(rw_(£))%ar + v()? in C(R x [0,tq))

it follows that I3 = F(t),, * (v(t)z)xx in D'(R x (0,ty)). Therefore we
may let ¢ + 0 in (2.10) to obtain (2.5).

The case c(vg) = 0 is easily dealt with by comparison since for every
§>0

i) S(S)vo < v, € T(G)v0 and IT(G)v0 - S(G)vol” +0 as 6§ + 0,

0
ii) c(s(8)vy) > O, c(T(G)vo) > 0.

To conclude the proof of the first part of Theorem 1 we have to identify

the function v as the pressure of the solution to problem (0.1).

PROPOSITION 2.3. et v e C(Q) N w (Q ) for every <t > 0 satisfy

i) for every t > 0, v(e,t) € N

ii) v, = -"‘—;1 (v"")xx + ‘2"‘")|Vx|2 in D'(Q)
1i1) v(+,0) = === ug™",

where u; is nonnegative, continuous and bounded. Then v is the pressure

associated to the solution of (0.1).

1

Proof. et u = ((ln-‘l)v/m)m.1 and let u be the usual solution of (0.1).
By the preceding results if I is the subregion of Q where v is positive
2 has the form {(x,t) € Q : 84(t) < x < sz(t)} and we have u e C(R). Also
(by standard regularity theory) u e ¢*(Q) and u, = (u“‘)xx is satisfies in
8 in the classical sense. Since u <u on the parabolic boundary of Q by
the maximum principle we get u < v in Q.

Moreover since (u™ ) x and v(e,t) e N it is easy to see that

Vx

(u‘“)x + 0 as (x,t) tends to the lateral boundary of (}, hence for every




x-sz(t)

¥4 d_ = m =
¢ 3 ] v(xt)ax = [(u )x]x-s1(t) 0

and we have
[ ulx,t)ax = [ ug(x)ax = [ u(x,t)ax .

Therefore u = ; in Q. #
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Y, 3. INTERFACES AND ASYMPTOTIC BEHAVIOUR

In this section we complete the proof of Theorem 1 by studying the
concavity of the interfaces of the solutions to problem (P) and derive its
consequences for the asymptotic behaviour of solutions and interfaces, Theorem

2,

Proof of the concavity of statement (0.6) of Theorem 1.

We may assume that v 1is a solution of (0.4) whose initial datum v,
satisfies (0.4) with C > 0. Also we may consider only the right-hand
interface and drop the subindex, g(t) = g,(t). Following the idea of the
proof of the converse inequality (0.3) ([CF], [V1]) we compare our solution
v with the Barenblatt solution w that has best contact with it, this time
from above, at a given point of the interface, the main difference lying in
the fact that we have to use a time-delayed Barenblatt. The outline of the
proof is as follows: 1let t4 > 0. Since v(e,t4) is strictly concave in its
support, cf. (0.5), wv,(z(ty) - 0, t4) is necessarily negative, therefore by
the interface equation
(3.1) g'(t) = =v (g(t) = 0, t)

({a], [K]) we have r7'(t). We consider the Barenblatt solution

(r(t+'r)2 - (x-x1)2)+

(3.2) wix,t) = 2(m 1) (41)
where r(t) is as in (0.12). The parameters M, Tt > 0 and Xy € R shall be

adjusted so as to have

(1) v(g(tq),tq) = wlg(ty),ty)

1 (11) v, (C(tq)=0,tq) = w, (T(ty)=0,t )
l~|
,ﬁg (1i1) v, (E,ty) < Wy (Estq) whenever v(E,tq) > 0.
wPiy By (0.5) and (3.2) the last inequality is implied by
o - c < - 1
§:§ +(m+1)Ct (m+1)(t +7) '
s
A
A
18-
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namely T » 1/((m+1)C). The best choice is
T= 1/((m+1)C)
We can now choose M and x4 8o that (i) and (ii) are satisfied. It follows
from (i) - (iii) that wv(-+,tq) <€ w(e,ty). Since both v and w are
solutions of (0.7) in S = R x (t4,®) it follows that v(x,t) < w(x,t) in
S. Therefore for every t > tq we have
glt) € gz (t) = x4 + r(t+r) .

Since at t = tq; we have Z(tq) = [, (tq) and 7'(t4q) = Zj(ty) (by (1),

(ii)) and
" £ = e—l
(3.3) S = e Wl

we conclude as in ([CF], (V1] that

(3.4) :"(t1) < - 7 c'(t1)

—_—
(m+1)(t1+1

in the sense of measures in (0,»), 4i.e. (0.6). #
(0.3) and (0.6) together imply that Z" is a locally bounded function.

(0.6) can be reformulated as saying that Z7'(t)/r'(t+t) is nonincreasing as a
function of t.

We now study the asymptotic behaviour. We state in detail the results
for the interface.

PROPOSITION 3.1. Let v be a solution of (0.4) such that v, satisfies

(0.4) with ¢ > 0 and let T = 1/((m+1)C). Then as t + = we have
(3.5) r(t) + x; < g(t) < r(t+r) + x4

(3.6) r'(t) > g'(t) > r'(t+r) .

Moreover g(t) - r(t+t) + xg and g'(t)/r'(t+r) + 1.

Proof. Since Z'(t)/r'(t+t) is nonincreasing and z(t)/r(t) + 1, cf. [V1], 31

it follows that z'(t)/r'(t+t) ¢ 1. Therefore Z(t) = r(t+tr) |is

nondecreasing. Since r(t+t) - r(t) + 0 and z(t) = r(t) + xo as t *+ &

({v1]) we have Z(t) = r(t+t) ¢ x5. This proves the right-hand
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inequalities. The left-hand inequalities were proved in [V1].

COROLLARY 3.2. As t +

(3.7) lzte) = (x(e) + x0)| < cgtt w1
(== + 1)
(3.8) lg (&) = ' (e)] < c,te w1
(-2 + 2)
(3.9) lzn(t) - e™(v)] < c,rt mH

where C4, Cy, Cq depend only on m,

Proof. (3.7) and (3.8) follow resp. from (3.5) and (3.6). Then the estimate

for ™ follows from this, (0.3) and (0.6).

To end the proof of Theorem 2 we remark that (0.13) comes from (0.2) and
(0.5). By integration we obtain estimates for v and v,. It is to be

remarked that the estimates for v, v,, { and z' are valid also in the case

of symmetric solutions without the assumption of concavity, cf. [V1, Theorem
Bl. In that case the result extends to several space dimensions. Let us

finally remark another consequence the above results.

COROLLARY 3.3. The interface of a concave solution to problem (P) has zero

p waiting time. More precisely with the above notations we have

(3.10) £'(0) > rh(r) = (c/(m#1)) (M 1™y V(m+))

(3.11) £'(0) » C(b-a)/2 .
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outside an interval (a,b) and such that (ug-l)“ <=C <0 in (a,b). Using
a Trotter-Kato formula we show that the solution conserves the concavity in
time: for every t > 0, u(x,t) vanishes outside an interval Q(t) =
(tl(t),cz(t)) and

m=-1 C
w" ") _ <~
XX 1+0 m(m+l) t
m-1

in Q(t). Consequently the interfaces x = ci(t), i =1,2, are concave curves.

These results also give precise information about the large time behaviour of
solutions and interfaces.
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